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Unsteady sheet fragmentation: droplet sizes
and speeds
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Understanding what shapes the drop size distributions produced from fluid fragmenta-
tion is important for a range of industrial, natural and health processes. Gilet &
Bourouiba (J. R. Soc. Interface, vol. 12, 2015, 20141092) showed that both the size
and speed of fragmented droplets are critical to transmission of pathogens in the
agricultural context. In this paper, we study both the size and speed distributions of
droplets ejected during a canonical unsteady sheet fragmentation from drop impact
on a target of comparable size to that of the drop. Upon impact, the drop transforms
into a sheet which expands in the air bounded by a rim on which ligaments grow,
continuously shedding droplets. We developed high-precision tracking algorithms that
capture all ejected droplets, measuring their size and speed, as well as the detachment
time from, and link to, their ligament of origin. Both size and speed distributions of
all ejected droplets are skewed. We show that the polydispersity and skewness of the
distributions are inherently due to the unsteadiness of the sheet expansion. We show
that each ligament sheds a single drop at a time throughout the entire sheet expansion
by a mechanism of end-pinching. The droplet-to-ligament size ratio R≈ 1.5 remains
constant throughout the unsteady fragmentation, and is robust to change in impact
Weber number. We also show that the population mean speed of the fragmented
droplets at a given time is equal to the population mean speed of ligaments one
necking time prior to detachment time.

Key words: aerosols/atomization, drops, instability

1. Introduction
Fluid fragmentation has been studied in a range of contexts (Villermaux 2007;

Josserand & Thoroddsen 2016) with a main focus on understanding the size
distribution of secondary droplets, due to their importance for a wide range of
applications in industrial processes, such as spray coating, cleaning, agricultural
irrigation, fuel combustion and heat transfer (Yarin 2006). Fluid fragmentation also
plays an important role in pathogen transmission (Bourouiba, Dehandschoewercker &
Bush 2014; Gilet & Bourouiba 2014, 2015; Scharfman et al. 2016). Both the sizes
and speeds of the produced droplets are critical in shaping the range and severity of
contamination.

† Email address for correspondence: lbouro@mit.edu
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Prior studies focused on the measurement of mean drop sizes produced as a function
of the fragmentation process involved and parameters such as the speed and fluid
properties of the impacting liquid jet or drop involved, nozzle geometry or surface
properties, with the goal of control and optimization of spray drop sizes. Typically,
measured drop size distributions are fitted by exponential, Poisson, log-normal
or families of gamma distributions all capturing various degrees of polydispersity
common in the final drop size distributions measured. Some of the distributions fitted
are rooted in relevant physical interpretations of the mechanism of fluid fragmentation
while others are not (Villermaux 2007). In practice, at least one free parameter is
used in such fits and different functional forms of distributions can be made to
match the same experimental data, even when the physical processes underlying the
distribution model used for the fit are contradictory. Picking the wrong model fit
leads to misunderstanding of the underlying physics and hinders optimized control of
sprays and technological advances with important industrial, environmental and health
implications. Physical insights on the detailed construction of drop size distributions
focused mainly on steady or stationary fragmentation, where droplet properties
are considered independent of time (Clanet & Villermaux 2002), or instantaneous
fragmentation, where all droplets are expected to be created simultaneously. However,
an important class of fragmentation processes in nature and industry are in fact
unsteady, continuously generating droplets of properties that vary with time.

Compared to a relatively rich literature proposing a range of families and
mechanisms that select drop size distributions (Villermaux 2007), droplet speed
distributions are seldom discussed. Thoroddsen, Takehara & Etoh (2012) studied the
size and speed of micro-splashed droplets ejected at very early time t � τimp of
unsteady sheet expansion from drop impact on solid surfaces. Here, τimp = d0/u0 is
the impact time scale and u0 and d0 are the velocity and diameter of the impacting
drop, respectively. They showed that the size and ejection speed of droplets evolve
with time. Riboux & Gordillo (2015) developed a model to rationalize and predict
the speed of droplets generated in the early time of splash t� τimp. However, most
droplets are ejected during the entirety of a fragmentation process not just at the very
early time. This is also the case for crown splash upon drop impact on a thin film, or
crescent-moon splash from drop-on-drop collisions (Gilet & Bourouiba 2015; Wang
& Bourouiba 2018). The droplet speed distribution of most fragmentation processes
remains unknown.

Here, we focus on a canonical unsteady fragmentation process occurring upon
drop impact on a small target of comparable size to that of the impacting drop
(figure 1). This fundamental framework enables us to gain insights into the selection
of ubiquitous polydispersed droplet size and speed distributions from unsteady
fragmentation, which can be generalized and translated to a wide range of applications.
We conducted systematic experiments and developed droplet and ligament detection,
tracking and connection algorithms that capture all ejected droplets during rim
fragmentation and link them to their ligaments of origin. The experiments and
algorithms are described in § 2. These algorithms allowed us to discover three
ejection modes of droplets during unsteady sheet fragmentation, which are discussed
in § 3. We discuss the size distribution of ejected droplets in § 4 and show that
their cumulative size distribution over time is shaped by the time evolution of their
instantaneous population mean size, which we also show to be fully determined
by their ligament of origin. The analogous discussion of the cumulative versus
instantaneous droplet speed distributions is in § 5.
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948 Y. Wang and L. Bourouiba

FIGURE 1. (Colour online) Schematic diagram of drop impact on a small surface of
comparable size to that of the impacting drop, transformed into a horizontal expanding
sheet. The optimal rod-to-drop diameter ratio used in the experiments is η= dr/d0= 1.44
(Wang & Bourouiba 2017).

d0 (mm) u0 (m s−1) We Re (×104) Nexp Ndrop

4.33± 0.05
2.86± 0.01 494± 9 1.24± 0.02 30 134
3.39± 0.01 693± 11 1.47± 0.02 30 167
4.00± 0.01 967± 17 1.73± 0.03 30 234

TABLE 1. Experimental conditions used from impacting drop diameter d0, impacting
velocity u0, to associated We = ρu2

0d0/σ and Re = u0d0/ν, where ρ = 1.0 × 103 kg m−3,
ν = 1.0 × 10−6 m2 s−1 and σ = 72 mN m−1, are the density, kinematic viscosity and
surface tension of the impacting drop, respectively. Nexp is the number of experiments
carried for each Weber number and Ndrop the average number of secondary droplets ejected
for each experiment.

2. Observations and droplet–ligament connection algorithm

We conducted systematic experiments of canonical unsteady sheet fragmentation
by impacting a drop on a cylindrical rod of comparable size to that of the drop.
An impacting drop of diameter d0 = 4.33 ± 0.05 mm is released by a needle from
three different heights. Drops are made of water and nigrosin dye at concentration
1.2 g l−1, with density ρ = 1.0 × 103 kg m−3, surface tension σ = 72 mN m−1 and
kinematic viscosity ν = 1.0 × 10−6 m2 s−1. The rod is made of stainless steel with
smooth top surface with contact angle between 52◦ and 81◦. The diameter of the rod
is 6.25 mm with a rod-to-drop size ratio of 1.44, which allows for a horizontal sheet
expansion and negligible surface viscous dissipation (Wang & Bourouiba 2017). We
use high-speed cameras to record the entire fragmentation process from both top and
side views simultaneously. A monochrome high-speed camera is used to record the
impacts from the top at 20 000 frame per second (fps) and with 768 × 768 pixel
resolution. A colour camera is positioned on the side to record at 5000 fps and with
1280 × 1000 pixel resolution. The impact velocity of the drops for each experiment
is directly measured from the side camera. The detailed experimental conditions and
their associated Weber number, We=ρu2

0d0/σ , and Reynolds number, Re= u0d0/ν, are
summarized in table 1.

Conventionally (Fantini, Tognotti & Tonazzini 1990; Yarin & Weiss 1995;
Villermaux & Bossa 2011; Thoroddsen et al. 2012; Peters, van der Meer & Gordillo
2013), drop size distributions were obtained by measuring the diameter of all the
droplets seen in a single image at the end of a fragmentation event or using a
sequence of images with fixed temporal intervals spanning the duration of the
fragmentation. On each image, droplet contours are detected and their diameter
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Droplet sizes and speeds 949

(a) (b) (c)

Ligaments Corrugation

FIGURE 2. (Colour online) (a) Sheet fragmentation and (b) separation of the rim and
ligament based on the inner and outer contours of the sheet detected by our algorithm.
The inset shows a local rim–ligament structure, defining the ligament length l, its width
w and rim thickness b. (c) Trajectories of the tip of all ligaments growing from the rim
during the entire sheet expansion.

is inferred from the detected enclosed area. Such approaches are accurate for either
droplets ejected continuously in steady fragmentation, such as a stationary Savart sheet
(Savart 1833a,b; Clanet & Villermaux 2002), or for droplets ejected simultaneously,
such as at the final breakup stage of an expanding sheet upon drop impact on a
rod (Villermaux & Bossa 2011). For continuous droplet ejection throughout unsteady
sheet fragmentation, a single image cannot capture the size and speed of all droplets
ejected. When using sequences of frames (Yarin & Weiss 1995), if the time difference
between two consecutive frames is too large, rapidly moving drops are missed. If the
time difference is too small, double counting of slow droplets occurs. Both artefacts
can lead to distortion of the final droplet size distribution produced. Moreover, the
ejection time of each droplet, critical to quantifying unsteady fragmentation, is also
missed by such approaches.

To guarantee accuracy in the capture of each ejected droplet without missing or
double-counting sub-samples, we developed a ligament–droplet connection algorithm
linking each ejected droplet to the ligament from which it detaches. The algorithm first
captures the outline of each ligament at each time, and tracks its shape and location
over time. Figure 2(a) illustrates the capture of both inner and outer contours of
the rim–ligament system by our algorithm. We track local protrusions considered
as ligaments when their length ` becomes larger than the local, instantaneous rim
thickness b (figure 2b). The tracks in figure 2(c) show the trajectories of ligament
tips throughout the sheet expansion. Droplets are continuously shed via ligament
breakup. When a new droplet is shed, its ligament of origin suddenly shrinks. Thus,
at each time, we consider new ejected droplets as those in the vicinity of a ligament
that suddenly shrank. Based on this principle, our algorithm captures all droplets and
identifies their ligament of origin, and precise detachment time.

Upon its ejection from a ligament, we can determine the size, speed and trajectory
of a droplet. We developed a droplet-tracking algorithm specifically tailored to handle
a wide range of droplet sizes and speeds. The algorithm first captures the contour
of ejected droplets at each time (figure 3a) and then tracks their position over time
accounting for the unsteadiness of the problem. By superposing the contour of droplets
from different frames on a single image, we can rebuild the trajectories of all ejected
droplets experimentally (figure 3b), matching very well with the tracking results of
our algorithm (figure 3c).
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950 Y. Wang and L. Bourouiba

(a)

(b) (c) (d )

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 0.1 0.2 0.3

Data

FIGURE 3. (Colour online) (a) Droplets detected by image processing at times t= 0.2τcap,
t = 0.4τcap and t = 0.6τcap. The black line shows the outer contour of the rim and
ligament. (b) Superposition of the trajectory of the droplets detected. (c) Tracks followed
by each droplet. Solid lines indicate droplet trajectories captured by the algorithm. (d)
Time evolution of the radial position of droplets with respect to the impact point, showing
that the droplets move at constant speed.

As described above, the traditional approach to measuring the size of ejected
droplets is to first detect their contour and then calculate their diameter from the
enclosed area within the detected contour. Two factors affect the accuracy of drop
size measurements. First, the contour on an image is detected from the gradient
of the local intensity on the image. The pixels with highest local gradient around
the object are considered part of its contour. Such a method has higher accuracy
when the contrast between the object and the background is high and the object
is well in focus, which we ensured. The error of measurement of our droplet sizes
is of the order of a pixel size, with images of approximately 40 µm pixel−1. The
droplets ejected during fragmentation, except for the satellite droplets described in
§ 3, are larger than 0.4 mm with a measurement error smaller than 10 %. Second, the
traditional approach used to compute droplet diameters based on the area Ad enclosed
within the detected contour: dA =

√
4Ad/π is accurate when the droplet is spherical.

Yet, the ejected droplets oscillate along their trajectories, under the balance of the
inertia and surface tension (figure 4a). Figure 4(b) shows the time evolution of the
droplet volume Ωd calculated from the area-based diameter with Ωd =πd3

A/6, clearly
showing that such volume oscillates spontaneously, violating mass conservation. Since
the evaporation time scale of droplets of O(0.1 mm) diameter is much larger than the
fragmentation time scale, the volume of the droplet should remain constant within our
duration of observation. The relative difference between the diameter of an oscillating
droplet calculated from its area can reach up to 10 %, the same order of magnitude
as that of a pixel-size error. The more accurate method of calculation of droplet
diameter should be based on a volume estimation, that is constant over time, rather
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(i) (i)(ii)

(ii)

(iii)

(iii)

(iv)

(iv)

(v)

(v)

(vi)

(vi)

Drop oscillation

0.040

0.045

0.050

0.055

0.060

0 0.5 1.0 1.5 2.0

t (ms)

(a) (b)

FIGURE 4. (Colour online) (a) Sequence of oscillation of a droplet after its detachment
from its ligament of origin. The time interval between images is 0.2 ms and the scale bar
is 0.5 mm. (b) Time evolution of the droplet volume Ωd calculated from an area-based
diameter dA =

√
4Ad/π, where Ad is the area of the droplet shown in (a). t= 0 refers to

the time at which the droplet detaches from the ligament. The data corresponding to the
times shown in (a) are labelled in (b).

than area which changes with time. The two approaches are equivalent when the
drop is exactly spherical. Our tracking algorithm detect the shape of each droplet
and extract the times at which eccentricity is closest to 0 (spherical). The diameter
is extracted from these selected times.

The speed of the droplets is obtained from calculation of the difference between
the position of two consecutive frames. Two aspects affect the accuracy of such speed
measurement. First, if a drop moves too fast, the droplet appears as a long blurred
trajectory with low contrast. In order to capture such fast moving droplets, while not
sacrificing image resolution, we reduce the shutter speed to 5 µs, 10 times higher
than the frame rate, which enables us to capture droplets with velocities smaller than
10 m s−1. The speed of the droplets ejected during unsteady sheet fragmentation are
within this range. In fact, we do see tiny droplets ejected at the very early stage of
sheet expansion of the order of 1 pixel size or less and leaving a blurred trajectory
in the image, with very low contrast. The droplets on which our study focus are
shed via a hydrodynamic instability of the expanding sheet in the air, while such
very tiny droplets are ejected even when the sheet edge is still on the rod/solid
surface, making the physics involved distinct, as no-slip, air trapping and precursor
film ejections are involved. Our study does not focus on these tiny droplet closer
to the micro-splashed droplets discussed in Thoroddsen et al. (2012) and Riboux &
Gordillo (2015). The second aspect is the effect of pixelization. The accuracy for the
droplet speed measurement from calculation of the difference between the droplet
positions in two consecutive frames is 1 pixel/frame, corresponding to 0.8 m s−1

here, which could lead to large errors when the speed of droplets is less than that
accuracy limit. To reduce the effect of pixelization, our algorithm can detect the time
when the speed of droplets is smaller than that limit, and then re-calculates the speed
by averaging the speed among multiple consecutive frames around that time. The
smaller the droplet speed is, the more consecutive frames are needed to reduce the
speed measurement error. The relative error for the speed measurement is reduced to
up to 20 %.

Figure 3(d) shows the time evolution of the radial position of the ejected droplets
with respect to the impact point, showing that droplets travel at a constant speed
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Expanding sheet

(a) (b)
(i)

(ii)

(iii)

Rim

Ligament-
merging

End-
pinchingDroplet

Satellite
droplet Satellite droplets

Ligament-merging

End-pinching

Ligament

Satellite
droplets

3 mm

0.5 mm

FIGURE 5. (a) Sheet fragmentation upon drop impact on a rod of comparable size to
the impacting drop. The expanding sheet is bounded by a rim on which ligaments grow
to finally eject secondary droplets. (b) Sequence of events for three different types of
secondary droplet ejections: end-pinching, ligament-merging and satellite droplets.

(i) (ii)

(iii) (iv)

Ligaments

Rim

Radial direction

(a) (b)

FIGURE 6. (a) Sequence showing the shift of ligaments induced by local cusps, leading
to the collision and merger of two ligaments. Time difference between images is 0.25 ms.
Scale bar is 1 mm. (b) Schematic diagram of drifting ligaments.

during our interval of observation. Since we are able to track the tip of a ligament as
mentioned above, the same approach is used to measure the tip speed of ligaments.
We discuss the relation between the speeds of droplets and ligament tips in § 5.

3. Three modes of droplet ejection

Drop shedding occurs continuously during sheet expansion in the form of three
modes of droplet ejection (figure 5b). The first mode is end-pinching (figure 5b-i).
Capillary deceleration of the tip of the ligament combined with fluid entering through
the ligament foot leads to bulge formation at the tip. A neck forms between the
bulged tip and the rest of the ligament and narrows progressively until a droplet is
ejected. This mode was reported in prior studies of jets as end-pinching (Schulkes
1996; Gordillo & Gekle 2010; Hoepffner & Paré 2013).

The second mode of ejection is ligament-merging followed by end-pinching
(figure 5b-ii). Ligaments do not always stay at a fixed angular position on the rim,
but shift along it. Due to a local wedge geometry formed by the rim (figure 6). Such

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

IT
 L

ib
ra

ri
es

, o
n 

18
 Ju

n 
20

18
 a

t 1
5:

04
:4

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

35
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.359


Droplet sizes and speeds 953

wedge shape is similar to that around Savart sheets referred to as cusps (Gordillo,
Lhuissier & Villermaux 2014). Cusps are caused by the non-uniform distribution
of mass per unit arc-length. The fluid from the sheet entering the rim accumulates
around corrugations and protrusions that can eventually become ligaments, at which
point the increase in mass per unit arc-length reduces capillary deceleration locally,
thus exacerbating local deformation (figure 6a). Around the cusps, the rim is no
longer perpendicular to the incoming sheet radial influx, but is at an angle θ from it
(figure 6b). Such angle induces a drift velocity along the rim. In the reference frame
of the rim, the incoming velocity uin(t) = u(R(t), t) − Ṙ(t), where R(t) is the radius
of the sheet at time t, Ṙ(t) is the radial velocity of the rim and u(R(t), t) is the fluid
velocity in the sheet at radius R(t). The drift velocity induced is the projection of the
incoming velocity uin in the direction longitudinal to the rim:

udrift = uin(t) sin θ with uin(t)= u(R(t), t)− Ṙ(t). (3.1)

The velocity profile of the expanding sheet upon drop impact on a rod inferred
from prior studies (Rozhkov, Prunet-Foch & Vignes-Adler 2004; Villermaux & Bossa
2011) and measured by Wang & Bourouiba (2017) is u(r, t) = r/t. In figure 6(a),
we measure udrift ≈ 0.32 m s−1, and we estimate uin = R(t)/t − Ṙ(t) ≈ 2.58 m s−1.
The angle measured is θ ≈ 8 ± 2◦, giving a prediction of drift velocity udrift =

2.58 × sin(8) = 0.36 m s−1 in good agreement with our experimental measurement.
The shifting ligaments collide and merge (figure 5b-ii), resulting into a typically
corrugated final ligament. Despite such corrugation, the resulting ligament continues
to shed only one drop from its tip immediately upon merger. We refer to end-pinching
and ligament-merging droplets as primary droplets.

The third mode of ejection creates satellite droplets (figure 5b-iii). During necking
between the bulged tip and the rest of its ligament, the neck elongates and thins. Upon
breakup, the neck can form one or multiple small satellite droplets. Such satellite
droplets are much smaller than primary droplets produced by the first two modes
and they account for only l0 % of all droplets ejected during sheet expansion. Thus,
the satellite droplets are not involved in the discussion of the droplet size and speed
distributions in subsequent sections.

4. Distribution of droplet sizes
4.1. Cumulative size distribution of droplets

Our study focuses on the size distribution of droplets ejected by the first two modes
defined as primary droplets in § 3. They account for 90 % of the total number
of droplets ejected during unsteady sheet fragmentation. Figure 7(a) shows the
distribution of the diameter of primary droplets ejected during the entire sheet
expansion. The distributions are skewed for all three Weber numbers. When attempting
to fit them with a gamma distribution proposed in Villermaux, Marmottant & Duplat
(2004)

P(n, x= d/〈d〉)=
nn

Γ (n)
xn−1e−nx, (4.1)

the order n changes severely with impact Weber number, departing from values given
by Villermaux & Bossa (2011). Note that the underlying physics of (4.1) is that
droplets fragment from elongated corrugated ligaments, where the coalescence and
aggregation process of corrugations selects the droplet size distribution. As discussed
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FIGURE 7. (Colour online) (a) Distributions of the diameter of primary droplets ejected
during the entire fragmentation process for three different Weber numbers. Droplet
diameters are non-dimensionalized by the diameter d0 of the impacting drop. The
distributions are all skewed and can be fitted by a gamma distribution of the order
shown. (b) Temporal evolution of the diameter of ejected droplets for three different Weber
numbers. Time is non-dimensionalized by the capillary time scale τcap =

√
ρΩ/πσ . Each

data point corresponds to one ejected droplet. Ejected droplets are separated into the three
groups described in figure 5(b).

in § 3, here a ligament only sheds one droplet from its tip at a time in an end-pinching
process. Thus, aggregation–coalescence of corrugations along ligaments do not apply
to rationalize the drop size distribution of unsteady expanding sheets examined here.

Figure 7(b) shows the measured diameters of ejected droplets with their detachment
time. Time is non-dimensionalized by the capillary time scale τcap =

√
ρΩ/πσ that

characterizes the sheet expansion and fragmentation process, where Ω is the volume
of the impacting drop. Each data point corresponds to one ejected droplet. Ejected
droplets are separated into the three ejection modes described in § 3. Except for the
less than 10 % of all droplets that are shed as satellite droplets, the mean diameter of
primary droplets clearly increases with time (figure 8b). Thus, it is the superposition
of distributions with shifting mean that leads to the skewed total distribution of
droplet sizes (figure 3a). To verify this, we calculate the instantaneous distribution
of primary droplet diameters at each time by considering data around that time over
a small time interval of 0.15 ms duration, within which the unsteadiness of the
sheet fragmentation is negligible. Figure 8 shows that the instantaneous distribution
at each time is symmetric and Gaussian. Figure 8(c) shows the total distribution of
diameters of ejected droplets after subtraction of the instantaneous mean diameter
shown in figure 8(b). The total distribution adjusted by its unsteady instantaneous
mean diameter is symmetric. This verifies that the skewness of the total distribution
shown in figure 7(a) is caused by the unsteady temporal evolution of instantaneous
mean droplet diameters.
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FIGURE 8. (Colour online) (a) Instantaneous distributions of the diameter of primary
droplets at three different times t= 0.2τcap, 0.4τcap and 0.6τcap for We= 693, where τcap=√
ρΩ/πσ is the capillary time scale characterizing the sheet expansion and fragmentation

process, and t = 0.4τcap is the time when the sheet reaches its maximum extension. The
instantaneous distributions are symmetric and Gaussian. (b) Time evolution of the mean
diameter of droplets from different ejection modes for We = 693. The inset shows the
comparison of the mean diameters of primary droplets for three different We. (c) The total
distribution of the diameter of all primary ejected droplets for We= 693 after adjustment
for the instantaneous mean diameter is not skewed.

4.2. End-pinching ligament width shapes droplet diameter
Discovering that unsteadiness shapes the skewness of the total distribution of
droplet diameters, we examine the time evolution of the population mean droplet
diameter 〈d〉. As discussed in § 3, droplets are mainly ejected from ligament tips. Our
tracking algorithm (§ 2) allows us to link each ejected droplet to its original ligament.
Figure 9(a) shows the ratio, R= d/w, of the diameter d of ejected droplet to the width
w of its original ligament as a function of time. Except for satellite droplets again,
less than 10 % of total droplets, the mean droplet–ligament size ratio for primary
droplets is constant over time: 〈R〉 = 〈d/w〉 ≈ 1.5 (figure 9b), and is independent of
impact Weber number (inset of figure 9b). This shows that the diameter of droplets
is determined deterministically by the width of the ligament shedding them, and that
such droplet–ligament size ratio is local and universal, i.e. independent of impact We
and sheet expansion.

In the case of a long cylindrical liquid ligament, the Rayleigh–Plateau instability
(Rayleigh 1878) typically triggers fragmentation with a fastest growing wavelength of
λ= 9w/2, where w is the initial cylinder diameter. Based on mass conservation, the
volume of the produced droplets at such wavelength would be

π

6
d3
=

9
2

w
(

1
4
πw2

)
, thus

d
w
= 1.89, (4.2)

which is larger than 〈R〉 = 〈d/w〉 ≈ 1.5. However, the Rayleigh–Plateau (R–P)
instability strictly holds for infinite or semi-infinite liquid cylinders. As discussed
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FIGURE 9. (Colour online) (a) The ratio R of the diameter d of each secondary droplet
with the width w of its original ligament as a function of detaching time for We= 693.
Droplets are separated into three scenarios as described in figure 5(b). (b) Time evolution
of the mean droplet–ligament size ratio of ejected droplets of different scenarios for We=
693. The ratio R of primary droplets remain constant over time. The inset shows that ratio
〈R〉 ≈ 1.5 holds for all We.

in § 3, droplets ejected during sheet fragmentation are shed from the tip of finite
ligaments that are too short for the R–P instability to apply. Instead, droplets are shed
via end-pinching which is caused by the retraction of ligament tips. Schulkes (1996)
studied end-pinching numerically for free liquid jets of arbitrary viscosity, finding that
the evolution of the ligament tip depends on the Ohnesorge number Oh= ν

√
ρ/wσ ,

a measure of competition between viscous forces, inertia and surface tension, similar
to the retraction of the rim of a sheet (Savva & Bush 2009). Ligaments of large
Ohnesorge number O(Oh) > O(1) are stable during retraction, while ligaments of
small Ohnesorge number O(Oh)<O(0.1) form a neck close to the ligament tip. When
Oh is much smaller O(Oh)<O(0.001), the ligament is unstable and the neck narrows
quickly until end-pinching. The critical value of Oh below which end-pinching occurs
was found to be Oh≈ 10−2 (Schulkes 1996). Based on the width of ligaments shown
in figure 11, the range of Oh here is 5.3 × 10−4 < Oh < 8.5 × 10−3, for which
end-pinching holds. A fully analytic solution describing end-pinching remains elusive
since vortex shedding was observed to occur experimentally at ligament tips during
necking (Hoepffner & Paré 2013), jeopardizing the validity of a one-dimensional
approximation of the problem (Eggers & Dupont 1994). Schulkes (1996) found
numerically that the ratio of the diameter of a droplet ejected by end-pinching to the
width of its ligament of origin is 1.5–1.6, which is close to our experimental data
(figure 9).

Gordillo & Gekle (2010) studied end-pinching at the tip of a Worthington jet, which
is a stretched liquid jet. Stretching rate can affect the ligament-tip breakup. Scaling
analysis compared with numerical simulation led Gordillo & Gekle (2010) to quantify
R as

R=
d
w
=

{
0.95We−1/7

s for Wes > 0.08
1.55 for Wes < 0.08

with Wes =
ρw3

8σ
s2

0, (4.3)

where s0 is the stretching rate of the ligament s0 = u̇liga/uliga, with uliga the velocity
of fluid entering the base of the ligament. Equation (4.3) indicates that when
Wes > 0.08, the ligament is dominated by stretching and the droplet–ligament size
ratio R is affected by said stretching. In our experiments, we estimate that for each
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FIGURE 10. (Colour online) (a) Time evolution of the mean droplet diameter 〈d〉, the
mean ligament width 〈w〉 and the sheet rim thickness b for We= 693. (b) The ratio R̄=
〈d〉/〈w〉 remains constant. However, compared with the mean size ratio of droplet–ligament
pairs 〈R〉= 〈d/w〉, a systematic gap between these two ratios persists. The inset shows the
ratio of ηR=〈R〉/R̄ to be constant over time and independent of We, with a value of 1.13.
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FIGURE 11. (Colour online) (a) Width of all ligaments (circle) w and ligaments about to
shed a droplet (square) wb as a function of time. (b) Time evolution of the corresponding
mean widths 〈w〉 and 〈wb〉. The inset shows the ratio ηw= 〈w〉/〈wb〉 ≈ 1.12 to be constant
and independent of We.

ligament Wes ≈ 0.05, below the stretching regime of Wes > 0.08. Using (4.3), the
droplet–ligament size ratio would then be R = d/w = 1.55, in good agreement with
our experiments.

In sum, we showed that the droplet ejection from unsteady sheet expansion is
caused by end-pinching, rather than the R–P instability or corrugation–coalescence
process of individual ligaments. We also showed that the droplet–ligament size ratio
of end-pinching obtained numerically in prior literature on jets applies and is robust
herein for the ligaments bounding the unsteady rim.

After considering the drop–ligament size ratio for each droplet–ligament pair, we
now turn to the relation between the population mean droplet diameter 〈d〉 and the
population mean ligament width 〈w〉 (figure 10a). It is clear that the mean droplet
diameter 〈d〉 follows the same trend as the mean ligament width 〈w〉, consistent
with figure 9. Figure 10(b) shows R̄ = 〈d〉/〈w〉 ≈ 1.3 to be constant over time,
but systematically smaller than 〈R〉 = 〈d/w〉 ≈ 1.5. The difference between the two
ηR = 〈R〉/R̄ ≈ 1.12 is constant and independent of Weber number (figure 10b-inset).
To understand the gap ηR, we examine the width of ligaments during droplet shedding
in more detail.
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FIGURE 12. (Colour online) Comparison of time evolution of the standard deviation of
the width of shedding ligaments wb, droplet–ligament size ratio R and droplet diameter d.
The prediction of σ(d) based on (5.3) is in very good agreement with the measurement.

Figure 11(a) shows the temporal evolution of the width w of all ligaments detected
compared to the width wb of those ligaments about to shed a drop, with their means
shown in figure 11(b). The systematic gap between the two means ηw = 〈w〉/〈wb〉 ≈

1.12 is also constant and independent of Weber number (figure 11b-inset), and equal
to the ratio ηR = R̄/〈R〉. Thus, the difference between the mean droplet–ligament size
ratio of each droplet–ligament pair 〈R〉 = 〈d/w〉 and the ratio of the population mean
droplet diameter with the population mean ligament width R̄= 〈d〉/〈w〉 is caused by
the systematic difference in width between shedding 〈wb〉 and non-shedding ligaments
〈w〉. Ligaments about to shed a drop generally have time to extend into a slender
shape, while non-shedding ligaments are typically close to bulged corrugations that are
wider. Clarifying the origin of the particular value 1.12 of 〈w〉/〈wb〉 for end-pinching
ligaments is of interest, but is beyond the scope of the present study.

Figure 9 shows the standard deviation of the width wb of ligaments that eject
droplets, the size ratio of droplet–ligament pairs R and the diameter of droplets d as
a function of time. Considering the mean 〈R〉 and 〈wb〉 and standard deviation σ(R)
and σ(wb) and, using d = Rwb, the standard deviation of the droplet diameter σ(d)
is

σ 2(d)= (σ 2(R)+ 〈R〉2)(σ 2(wb)+ 〈wb〉
2)− 〈R〉2〈wb〉

2. (4.4)

The prediction of standard deviation of ejected droplet diameter by (4.4) is in a
good agreement with our experimental data (figure 12), confirming the robustness and
accuracy of our measurements. Equation (4.4) combined with figure 10(b) show that
the standard deviation of instantaneous droplet diameter around their mean size is
directly inherited from the standard deviation of the width of their ligament of origin
at breakup, and not from the breakup process itself.

5. Distribution of droplet ejection speed
5.1. Cumulative speed distribution of droplets

Figure 13(a) shows the total speed distribution of droplets ejected throughout the
unsteady sheet fragmentation for three different Weber numbers, non-dimensionalized
by impact velocity u0. The total distribution of droplet speeds has a peculiar shape
with two peaks. Figure 13(b) shows the measured speed of all ejected droplets,
as a function of their detaching time, for three We. As previously done, time
is non-dimensionalized by the capillary time scale τcap =

√
ρΩ/πσ , which is

characteristic of the sheet expansion and fragmentation. Ejected droplets are separated
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FIGURE 13. (Colour online) (a) Total distribution of speed of droplets ejected during the
entire fragmentation process for three different Weber numbers (a Weber per column). The
droplet speed distribution is non-dimensionalized by the impact speed u0 of the falling
drop. (b) Ejection speed of droplets as a function of time for three different Weber
numbers with each data point corresponding to one ejected droplet. Ejected droplets are
separated into the three different modes of ejections revealed in § 3.

in the three modes of ejection: end-pinching, ligament-merging and satellite droplet
ejection identified in § 3. The ejection speed of droplets varies with time (figure 13a)
and is monotonically decreasing with time. Clearly, the total speed distribution is
entirely shaped by the unsteadiness of the instantaneous mean of the ejection droplet
speed. To verify this claim, we calculate the distribution of droplet ejection speed
at each time as shown in figure 14(a). The instantaneous distribution is symmetric
and Gaussian. Figure 14(b) shows the time evolution of the standard deviation of
the ejection speed of droplets for different modes of ejection. Both the mean value
and standard deviation of the ejection speed of end-pinching and ligament-merging
droplets collapse onto a single curve, showing that the ejection speed is independent
of the mode of ejection (figure 14b,c).

Figure 15 shows the total distribution of the ejection speed of droplets after
subtraction of the instantaneous mean speed (figure 14b). The total adjusted
distribution is symmetric and Gaussian. Thus, the peculiar shape of droplet speed
distribution in figure 13 is due to the unsteadiness of the mean of ejection
speed characterized by two regimes: an early time and late time speed evolution.
Figure 15(b,c) shows that the total speed distribution of both end-pinching and
ligament-merging droplets around their respective mean speeds are also Gaussian,
confirming that the instantaneous ejection speed of droplets is independent of ejection
mode.

5.2. Ligament speed shapes droplet speed
It is important to understand what determines the time evolution of mean droplet
ejection speeds. Figure 16(a) shows that ligament-tip speed and droplet ejection
speed fully overlap. This indicates that the drop ejection speed is determined by the
speed of the tip of its ligament. Keller (1983) studied the retraction speed of the tip
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FIGURE 14. (Colour online) (a) Instantaneous distribution of droplet speed at three
different times t= 0.2τcap, 0.4τcap and 0.6τcap for We= 693, where τcap=

√
ρΩ/πσ is the

capillary time scale characterizing the sheet expansion. t= 0.4τcap is the time of maximum
sheet radius. Instantaneous speed distributions are Gaussian with standard deviation given
in the legend. (b) Mean ejection speed and (c) associated speed standard deviation of
the droplets follow the same temporal trend for both end-pinching and ligament-merging
modes of ejection.
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Primary droplets End-pinching Ligament-merging

FIGURE 15. (Colour online) (a) The total distribution of ejection speeds of all droplets
for We= 693 after adjustment for instantaneous mean speed is Gaussian in contrast with
the total speed distribution in figure 13. Clearly, unsteadiness of the instantaneous mean
droplet speed shapes the skewness observed in figure 13. The same applies for the speed
of (b) end-pinching and (c) ligament-merging droplets when considered separately.

of free liquid jets and derived, by momentum conservation, that the tip retraction
speed is constant

√
2σ/rl for uniform liquid jets of radius rl, which is similar to a

Taylor–Culick speed for ruptured sheet retraction (Culick 1960). Hoepffner & Paré
(2013) showed that the retraction tip speed of free liquid jets should be

√
σ/rl,

which was verified by their own experimental data. The expression of Keller (1983)
overestimates the speed by a factor of

√
2 due to their neglect of the inner curvature

pressure of the cylindrical liquid jet, which was recovered in their derivation for the
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FIGURE 16. (Colour online) (a) Temporal evolution of ejection speed of droplets and tip
speed of ligaments. The overlap between the two shows that the speed of a ligament tip
is inherited by the droplet right after detachment. (b) Zero velocity difference between
the ejection speed of droplets and the tip speed of their ligaments of origin. (c) The
total distribution of ligament-tip speeds adjusted for the moving instantaneous mean
is symmetric and Gaussian. (d) Comparison of the distribution of ligament-tip speeds
adjusted for the moving mean, as shown in (c), with that of the ejection speed of primary
droplets, as shown in figure 15(a), on a semi-log plot, both being Gaussian. The width
of the distribution of ligament-tip speeds is larger than that of primary droplet speeds.

speed of the jet tip in Ting & Keller (1990). However, as shown in figure 16, the
tip speed of a ligament growing out of a rim here is not constant. Instead, it follows
the speed of the sheet rim. Indeed, the incoming fluid from the rim into the base
of the ligament is determined by both the sheet expansion and rim destabilization.
Based on our ligament-tracking algorithm introduced in § 2, we can link each droplet
to the ligament from which it detaches. Figure 16(b) shows no distinction between
the speed of a droplet and that of the ligament from which it detaches. That is, the
ejection speed of each droplet is equal to the speed of its ligament’s tip prior to
breakup.

Although the droplet speed is equal to the ligament-tip speed prior to detachment
for each droplet–ligament pair, a systematic gap between the population mean ejection
speed of droplets and the population mean speed of ligament tips exists (figure 18a).
To understand the origin of such gap, we need to examine the detachment more
precisely.

Figure 17(a) shows the ligament deformation preceding droplet detachment in the
form of a sequence. All images are given in the reference frame of the ligament.
As described in § 4, capillary forces decelerate the tip of the ligament, while fluid
continues to feed its foot, thus leading to fluid accumulation forming a bulged tip.
A neck forms between the tip and the rest of the ligament. The neck width narrows
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Bulge

Neck

Droplet speed
Ligament speed
Mean speed of all ligaments

0.5

1.0

1.5

2.0

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(a) (b)

(c)

FIGURE 17. (Colour online) (a) Sequence of events leading to bulge formation and
necking of the tip of the ligament prior to droplet detachment in the reference frame of
the rim. t3 is the time of start of necking, and t5 is the time of droplet ejection. The time
interval between images is 0.15 ms and the scale bar is 0.3 mm. (b) Time evolution of the
tip speed of one ligament and the ejection speed of the secondary droplet detaching from
it. The solid line gives the time evolution of the population mean speed of all ligament
tips. (c) Sequence of ligament deformation prior to droplet detachment in the absolute
reference frame. t1 to t6 correspond to the times shown in (a). The solid line shows that
after necking, the ligament tip moves at constant speed, which is the same as the ejection
speed of droplets after detachment. The dot-dash line connects the tip positions at t1 and
t2 and the dash line connects the tip positions at t2 and t3. By comparing the slopes of
the three lines, it is clear that the ligament tip decelerates before necking at t3, which is
consistent with (b). Scale bar is 0.3 mm.

progressively to finally break and eject a droplet. In figure 17(a), the ligament
continues to grow on the rim at time t1. When time t2 is reached, the ligament tip
deforms into a bulge. At time t3, the bulged tip of the ligament is fully formed
and the neck between the bulged tip and the ligament starts to form. Compared to
the ligament at time t4 where a clear neck is observed, the ligament maintains an
approximate constant width between the bulged tip and the rim at time t3. Thus we
consider t3 as the onset of neck formation. At time t5, the width of the neck narrows
down to 0, the ligament is close to pinching and ejection of the droplet. At time t6,
the droplet is ejected by the ligament and moves freely in the air. Figure 17(b) shows
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0
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Droplets
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1.0

ß

FIGURE 18. (Colour online) (a) Normalized time evolution of the population mean speed
of secondary droplets (blue circle) compared with the population mean speed of ligament
tip (red square) for We = 693. The velocity gap between the two is due to ligament
necking. The mean speed of ligaments one necking time tneck (5.2) earlier (dash line)
matches very well with the mean speed of droplets. (b) The standard deviation of the
speed of secondary droplets follows the trend of ligament-tip speed, but also with a time
delay of tneck. When shifted by tneck, the standard deviation of droplet speed matches with
that of ligament-tip speed (inset). This confirms that the speed evolution of secondary
droplets is inherited from the ligament tip one necking time earlier.

the time evolution of the speed of one ligament’s tip (figure 17a), compared to the
population mean speed of ligament tips. From neck formation until final breakup, the
speed of the ligament tip deviates from the population mean tip speed but remains
constant, and equal to the final droplet ejection speed. This is readily observed when
we look at the motion of ligaments in the absolute reference frame. Figure 17(c)
shows the solid straight line which crosses the tip of the ligament from t3 to t5,
indicating that the tip speed remains constant throughout the duration of necking.
The solid line also crosses the lower end of the ejected droplet at time t6. This shows
that the constant speed of the ligament tip during necking is equal to the speed of the
ejected droplet, which is consistent with figure 17(b). We can also see that the slope
of the solid line is smaller than that of the dash line connecting the tip positions at
t2 and t3 and the dot-dash line connecting the tip position at t1 and t2, showing that
the tip is decelerating before necking t3. Indeed, when the neck narrows, the capillary
force exerted by the neck on the ligament tip, F≈ σπwn, decreases, where wn is the
width of the neck. Hence, the decrease of the capillary-induced deceleration of the
tip.

Since the speed of a droplet is equal to the speed of the tip of its ligament of origin,
which remains constant throughout necking, the droplet ejection speed should be equal
to the ligament-tip speed one necking time prior to pinch-off. Thus, the population
mean speed of droplets and ligaments should relate as:

〈ud〉 = 〈ul〉(t− 〈tneck〉), (5.1)

where tneck is the necking time of the ligament. Dimensional analysis allows to
estimate the necking velocity as vn ∼

√
σ/ρw, where w is the width of the ligament

and is also the local characteristic length scale of the necking region. The necking
time scale is tn ∼ w/vn =

√
ρw3/σ , showing that the necking time scale tn is

proportional to the local capillary time scale, which has been reported in prior studies
of breakup of free cylindrical liquid jets (Sterling & Sleicher 1975; Eggers & Dupont
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1994; Gordillo & Perez-Sborid 2005). Clanet & Lasheras (1999) experimentally
measured the necking time of a drop pinching-off from a nozzle and found its
empirical expression to be

tneck = 3.16

√
ρw3

8σ
. (5.2)

This result is close to the characteristic growth time scale of the fastest growing mode
of the R–P instability (Rayleigh 1878) for free cylindrical liquid columns, which has
the same expression as (5.2) with prefactor 2.91 instead of 3.16. Schulkes (1996)
and Gordillo & Gekle (2010) studied the breaking time of a drop from the tip of a
retracting ligament by end-pinching. In their numerical simulations, they found that
the breaking time for an inviscid and unstretched ligament is tbreak ≈ 4.7

√
ρw3/8σ ,

larger than the necking time (5.2) obtained by Clanet & Lasheras (1999). Our
experimental data show a necking time tbreak ≈ 3.2

√
ρw3/8σ , which is very close to

(5.2), but smaller than the breaking time obtained by Schulkes (1996) and Gordillo &
Gekle (2010). Indeed, we consider the necking time as the period of narrowing of the
neck during which the tip speed remains constant, while the breaking time obtained
numerically by Schulkes (1996) and Gordillo & Gekle (2010) refers to the full
duration from a uniform ligament to final breakup of its neck, including the early stage
of bulge formation. In order to verify (5.1), we compute the mean necking time of
ligaments based on (5.2) and use the measured mean width of ligaments. As described
in § 4.2, we introduced two different types of mean ligament widths: the mean width
of all ligaments on the rim 〈w〉, and the mean width of ligaments about to shed a
droplet 〈wb〉. Ligaments about to shed droplets extend into slender bodies before the
shedding. Thus, 〈wb〉 is systematically smaller than 〈w〉 during fragmentation, with
a robust and Weber-number-independent ratio ηb = 〈w〉/〈wb〉 ≈ 1.12. Here, since tneck
refers to the necking time of the ligament about to shed a droplet, we need to use
wb, rather than w for the calculation of tneck. Using (5.1) and (5.2), our prediction
of the mean speed of droplets is in excellent agreement with our experimental data
shown in figure 18(a). In addition to the mean speed of droplets and ligaments,
figure 18(b) shows that the standard deviation of the distribution of droplet speeds
follows the same trend as the standard deviation of the distribution of ligament-tip
speeds, but appears delayed. When shifted by one population mean necking time
〈tteck〉, the standard deviation of the speed of the droplets also matches that of the
speed of the ligament tips well. Combining the results of figure 18(a,b), we confirm
that the population mean ejection speed of droplets is the population mean speed of
ligament tips one necking time prior to pinch-off.

6. Conclusion
Unsteady fluid fragmentation is ubiquitous in nature and important to control in

a range of industrial and environmental processes. To date, the literature mainly
focused on the size distribution of fragmented droplets. By contrast, little attention
has been paid to the droplet speed distribution, though the speed of droplets is
critical for chemical and pathogen transport, shaping the range and severity of
contamination. Even for droplet size distributions, various models were proposed
for steady fragmentation (Villermaux 2007), yet few studies focused on unsteady
fragmentation. Here, we studied both the size and speed distributions of droplets
ejected during canonical unsteady sheet fragmentation upon drop impact on a
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surface of comparable size to that of the impacting drop. The insights gained in
this canonical problem are important as they can be generalized to more complex
unsteady fragmentation processes.

We developed high-precision image processing and tracking algorithms that capture
all ejected droplets, measuring their sizes and speeds, as well as their detaching times
and ligaments of origin. We showed three ejection modes of droplets from ligament
breakup: end-pinching, ligament-merging followed by end-pinching and satellite
droplets. Each ligament sheds one drop at a time in the first two modes, which
account for the creation of over 90 % of the droplets. We also found that the total
size and speed distributions of droplets ejected during unsteady sheet fragmentation
are skewed. Such skewness is due to the unsteadiness of the sheet expansion, inducing
an increase of the population mean diameter and a decrease of the population mean
speed of droplets shed throughout the sheet expansion. The instantaneous size and
speed distributions remain, however, symmetric and Gaussian. It is the superposition
of Gaussian distributions with moving means that give rise to the skewness of the
total size and speed distributions observed.

For droplet sizes, we showed that the ratio of diameter of each ejected droplet to
the width of its ligament of origin, at a given time, is 〈R〉 = 〈d/w〉 ≈ 1.5, and is
constant and independent of impact Weber number. The mean instantaneous droplet
diameter 〈d〉 is selected by the instantaneous ligament width 〈w〉 that increases over
time. The droplet-ligament size ratio 〈R〉= 〈d/w〉=1.5 differs from that expected from
the Rayleigh–Plateau instability, but is consistent with the ratio obtained numerically
for jet end-pinching (Schulkes 1996; Gordillo & Gekle 2010). Although the droplet–
ligament size ratio 〈R〉 = 1.5 is robust for each droplet–ligament pair, we found a
systematic gap between R̄= 〈d〉/〈w〉 and 〈R〉 = 〈d/w〉: ηR= 〈R〉/R̄= 1.12. We showed
that this is due to the gap between the instantaneous mean width of all ligaments
〈w〉 and the instantaneous mean width of ligaments about to shed a drop 〈wb〉. At
each time, the ligaments about to shed a drop are more slender than the others with
ηw = 〈w〉/〈wb〉 = 1.12, a value we found to be robust, constant and independent of
impact We.

For droplet speeds, we showed that the ejection speed of droplets is equal to the tip
speed of their ligaments of origin prior to necking onset for each droplet–ligament pair.
We showed that, during necking, the tip speed of a ligament remains constant, but
deviates from the population mean speed of ligament tips that continues to decelerate
with the sheet rim. In fact, the population mean speed of droplets is equal to the
population mean speed of ligaments one necking time earlier.

In sum, our findings show the critical importance of unsteadiness in shaping both
size and speed distributions of fragmented droplet sprays. For unsteady fragmentation,
the size and speed of droplets ejected by their ligament, one at a time via
end-pinching, evolve continuously; hence resulting in a final cumulative polydisperse
distribution. This is in contrast with the mechanism of aggregation–coalescence of
corrugated long ligaments producing multiple droplets for steady ligament-mediated
fragmentation. Thus, when both unsteadiness and aggregation–coalescence processes
coexist at different stages or simultaneously during fragmentation, it is important
to examine which of the two effects dominate in selecting for the skewness of the
final drop speed and size distributions. A blind fit of distributions, including gamma
distributions such as (4.1), can lead to misleading insights into the underlying physics
and limit predictability and control of spray properties for changing conditions of
operation. In the ubiquitous case of sheet fragmentation upon drop impact considered
herein, the fragmentation is coupled with the unsteady sheet expansion. Time evolution
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of sheet expansion upon drop impact on solid surfaces or small targets were studied
(Yarin & Weiss 1995; Rioboo, Marengo & Tropea 2002; Rozhkov, Prunet-Foch
& Vignes-Adler 2002; Roisman, Berberovi & Tropea 2009; Eggers et al. 2010;
Villermaux & Bossa 2011; Lastakowski et al. 2014). However, few studies attempted
to link the dynamics of sheet expansion to the fragmented droplets. Some did so
focusing on the droplet sizes and the later stage of retraction (Villermaux & Bossa
2011) and others at the very early stage prior to full sheet formation (Riboux &
Gordillo 2015). The dynamics that links the sheet, to the rim, to the ligaments and
to the final droplet sizes and speeds throughout the entire unsteady sheet expansion
remains unknown. This paper links the size and speed of ligaments with the size and
speed of their ejected droplets throughout the entire unsteady sheet expansion. The
full dynamics coupling the unsteady sheet–rim–ligament system is our next focus.
Finally, this fundamental study also has profound implications for the understanding
and control of fluid fragmentation leading to pathogen transmission from contaminated
finite surfaces (Gilet & Bourouiba 2014, 2015; Wang & Bourouiba 2018), and efficacy
of coating or washing of such surfaces, in addition to the myriad of other industrial
and agricultural processes involving sprays.
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