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The purpose of this study is to examine the strongly rotating limit of a turbulent flow theoretically
and numerically. The goal is to verify the predictions of asymptotic theories. Given the limitations
of experimental and dissipative numerical approaches to this problem, we use classical equilibrium
statistical mechanics. We apply the statistical mechanics approach to the inviscid truncated model of
strongly rotating turbulence �in the small Rossby number range� and derive the theoretical spectra of
the decoupled model. We use numerical simulations to complement these derivations and examine
the relaxation to equilibrium of the inviscid unforced truncated rotating turbulent system for
different sets of initial conditions. We separate our discussion into two time domains: the discussion
of the decoupled phase with time below a threshold time t�, for which a new set of invariants S are
identified, and the coupled phase with a time beyond t�, for which the quantities S are no longer
invariants. We obtain a numerical evaluation of t� which is coherent with the theoretical asymptotic
expansions. We examine if the quantities S play a constraining role on the coupled dynamics beyond
t� t�. We find that the theoretical statistical predictions in the decoupled phase capture the
horizontal dynamics of the flow. In the coupled phase, the invariants S are found to still play a
constraining role on the short-timescale horizontal dynamics of the flow. These results are discussed
in the larger context of previous rotating turbulence studies. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2958319�

I. INTRODUCTION

Rotation plays an important role on the dynamics of
large scale geophysical and astrophysical flows. The Coriolis
force appears only in the linear part of the momentum equa-
tions, but if strong enough, can radically change the dynam-
ics. The strength of the applied rotation, �, only has an ap-
preciable influence when it is comparable or larger than the
nonlinear term. The nondimensional Rossby number Ro is a
measure of the strength of the rotation. When �→�,
Ro→0. When the Coriolis force is applied, inertial waves
are solutions of the linear momentum equations. Their fre-
quencies vary from zero to 2�.1 The zero linear frequency
modes correspond to two-dimensional �2D� structures,
aligned with the rotation axis. In the full nonlinear problem,
the large range of frequencies of the inertial waves is at the
origin of a complex nonlinear interplay of interactions in-
volving the 2D structures and the wave �three-dimensional
�3D�� modes.

Rotating turbulence has been studied by using various
approaches. Experimental studies2–7 and numerical simula-
tions of forced8–10 and decaying11,12 rotating turbulence have
been performed. Three distinct rotation regimes were identi-
fied for decaying rotating turbulent flows:13 the weakly rotat-
ing range, the intermediate Ro range, and the small Ro
range. The intermediate range was characterized by a mecha-
nism of maximum leakage of energy from 3D �wave� modes
toward 2D zero-frequency modes and an asymmetry of the
vorticity distribution. The small Ro range was characterized

by a minimal energy transfer between zero-frequency modes
and wave �3D� modes, an upscale transfer of energy for the
zero-frequency modes, and no significant vorticity distribu-
tion asymmetry. A posteriori, most results of experimental
and numerical studies cited above that observe an increase in
the maximum vorticity asymmetry and dominant 2D mode
growth fall into the intermediate Ro range. The mechanisms
causing the growth of the 2D modes in this regime are still
unclear. Both nonlinear effects, such as the near-resonant
interactions14 in forced numerical simulations, and linear
effects15 in decay inhomogeneous flow experiments are ar-
gued to be at the origin of the generation of columnar struc-
tures repeatedly observed in this regime.4 More investigation
is needed of the asymmetry mechanisms typical of this inter-
mediate Ro regime and the timescales of the mechanisms
involved.

All of the above approaches �experimental, forced, and
decay numerical simulations in homogeneous and inhomoge-
neous rotating turbulence� can be used to pursue the under-
standing of the intermediate Ro regime. This is not the case
for the small Ro regime. The tools available to study the
small Ro regime are less obvious. An attempt using a statis-
tical approach and quasinormal Markovian approximations
was used16 and focused on the dynamics of the resonant
interactions. However, this study only captures the dynamics
of the 3D wave modes and the effects of the pure resonant
interactions, which are not the only interactions present for
asymptotically small but nonzero Ro numbers. Using an ex-
perimental approach to study this extreme regime is difficult
due to the strength of rotation rates needed. In addition, there
is difficulty in interpreting the experimental results when
other effects are involved �e.g., Ekman layer dynamics ora�Electronic mail: lydia.bourouiba@mail.mcgill.ca.
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inhomogeneity of the flow�. Direct numerical simulations of
both forced and decaying rotating turbulences in the strong
rotation limit have the advantage with regards to these con-
straints. However, they also have limitations. When perform-
ing forced and decay simulations of the small Ro regime,
like for all other rotating regimes, a sufficient resolution of
the inertial range is needed in order to limit the effect of the
dissipation range on the scales of interest. In the small Ro
regime, this need for a sufficiently large inertial range, com-
bined with �1� a typically slow nonlinear timescale that im-
poses a long numerical integration time in order to analyze
the long-timescale dynamics and �2� a large amplitude for
the Coriolis force which imposes a small timestep needed for
the numerical integration, leads to major numerical limita-
tions.

Due to the limitations of both forced and decaying simu-
lations, we choose to focus this study of the small Ro regime
on the statistical equilibrium and inviscid dynamics of its
truncated governing equations. The inviscid approach takes
root in equilibrium statistical mechanics, which is our pri-
mary theoretical tool. In addition, we use complementary
numerical simulations of the inviscid spectrally truncated
equations of the rotating flow. This approach has the advan-
tage of allowing a smaller resolution and thus a much longer
integration time. A sufficiently long integration time is criti-
cal for the better understanding of the small Ro regime. The
study of inviscid flows with the method of equilibrium sta-
tistical mechanics is a theoretical approach to an idealized
problem. However, this theoretical approach has proven
helpful in understanding numerous fundamental turbulence
problems. In fact, the use of equilibrium statistical mechan-
ics theory for the study of inviscid flows captured the inverse
energy cascade of 2D turbulence and the forward energy
cascade of isotropic turbulence.17–19 The inviscid flow is ex-
pected to relax to absolute equilibrium. For a review of the
statistical theories and equilibrium spectra see Ref. 20, and
for a complete exposé of the latest statistical theories for
geophysical flows see Ref. 21.

In addition, the numerical study of truncated inviscid
flow models has been used to investigate the relaxation to
equilibrium for 2D turbulence22 and provided a general
agreement with equilibrium statistical theory. Statistical
equilibria of other sets of truncated equations were also in-
vestigated: quasigeostrophic flows,21,23,24 weak turbulence
flows for shallow water equations,25 the nonhydrostatic ro-
tating Boussinesq equations,26 2D turbulence shear flow,27

and stratified flows.28 The relaxation to equilibrium of a
spectrally truncated 3D isotropic flow was also recently stud-
ied numerically.29,30 Finally, spectrally truncated 3D rotating
turbulence was studied numerically by Yamazaki et al. They
examined moderate rotation rates and observed a relaxation
to isotropic equipartition. They also observed that rotation
introduced a delay and scale dependency on the relaxation-
to-equilibrium timescale. The fundamental difference among
the inviscid truncated systems listed above is the number and
properties of their physical invariants. These invariants, or
conserved quantities, play a key role in both the formalism of
the inviscid statistical equilibrium and the understanding of
the dissipative dynamical counterpart.

In this study, we apply the equilibrium statistical me-
chanics approach to truncated inviscid flows subject to a
strong rotation. The model of equations predicted by the sin-
gular perturbations in this regime conserves a new set of
invariants. Using this new set of invariants, we first derive
the predicted equilibrium spectra associated with the new
invariant quantities. We then turn to numerical simulations to
compare the theoretical spectra obtained to the numerical
inviscid truncated solutions. We thus intend to examine four
primary questions: �1� Does the theoretical model of
decoupled equations derived based on the assumptions of the
asymptotic expansions capture the dynamics of the spectrally
truncated solutions? �2� If this is not the case, are some fea-
tures of the small Ro regime nevertheless captured? �3� If
this is the case, on what timescale does this hold, and is that
time consistent with the timescale predicted by the
asymptotic theories? �4� How do the dynamics change be-
yond this threshold time and are the invariants still playing a
constraining role?

In Sec. II, the problem and equations of rotating turbu-
lence are introduced and the timescales of the problems are
discussed. In Sec. III, we apply the method of equilibrium
statistical mechanics to the rotating turbulence problem and
discuss its new invariants. We also derive their associated
statistical equilibrium spectra. The theoretical spectra are
then compared to the numerical solutions of the truncated
inviscid equations in Sec. IV. We further discuss our ap-
proach and the results in Sec. V.

II. EQUATIONS AND ROTATING TURBULENCE
THEORIES

A. Full equations

In a rotating frame of reference, the incompressible in-
viscid nondimensional momentum equation is

�u

�t
+ Ro�u · ��u + ẑ � u = − �p, � · u = 0, �1�

where Ro=U /2�L is the Rossby number, a dimensionless
measure of the relative size of the advection and rotation
terms, �=�ẑ is the rotation vector, f =2�, u= �u ,v ,w� is
the velocity vector, and p is the reduced pressure that in-
cludes the centrifugal term. Without loss of generality, the
rotation axis has been chosen to be in the vertical direction ẑ.
Nondimensionalization was done using �2��−1, L, and U as
characteristic time, length, and velocity, respectively. When
linearized about a rest state, the normal modes n�s

, with the
eigenvalues �s=sfkz /k and s=� can be derived �see Appen-
dix for details�. This new basis can be used to re-express the
implicitly nondivergent velocity field as

u�r� = �
k

u�k�exp�ik · r�

= �
k

�A+�k,t�n+�k� + A−�k,t�n−�k��exp�ik · r� , �2�

with As�k , t�=as�k�exp�i�st�. The reality condition �u�r�
must be real� implies that u*�k�=u�−k�. Thus, the Fourier
components as�k� satisfy a

s
*�k�=as�−k�.
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B. Two-timescale problem, resonance condition

The Ro number can also be considered as the ratio be-
tween two timescales: Ro=T1 /T2, where T1= �2��−1 is a
rapid timescale associated with the rotation and T2=L /U is a
slow timescale associated with the nonlinear interactions.

When rotation is strong, Ro→0 and the timescale sepa-
ration between T1 and T2 becomes larger. Thus, Eq. �1�
evolves on both a slow vortical timescale that could be re-
expressed as �1=Rot and a fast wave timescale �0= t, where
t is the nondimensional time t= t̃ f and t̃ is the physical di-
mensional time. A multiple timescale asymptotic expansion
can thus be performed. The leading-order part of this two-
timescale problem is equivalent to the linear counterpart of
Eq. �1� and has inertial wave solutions �as seen in Appendix�.
The nondimensional counterparts of the dimensional fre-
quencies �s are �sk

�k�=skẑ ·k / �k�=skkz /k=sk cos�	k�, with
sk= �1 and 	k being the angle between k and the axis of
rotation. In the following, �sk

�k� is also denoted by �sk
.

At the first order of the expansion, the only interacting
triads that have a significant contribution on the slow time-
scale �1 are those that satisfy the resonance condition1,31

�sk
�k� + �sp

�p� + �sq
�q� = 0. �3�

In other words, the modal solutions are given by the two
equations

k + p + q = 0 and sk
kz

�k�
+ sp

pz

�p�
+ sq

qz

�q�
= 0. �4�

The zero-frequency modes belong to the Fourier-space plane
defined by kz=0, corresponding to the vertically averaged
real-space velocity field.

C. Modal decomposition

Our approach is to classify the modes into two groups:
wave modes with nonzero frequencies, corresponding to
kz�0 in Fourier space �also referred to as 3D modes�, and
zero-frequency modes. The following notation is used:

If k � Vk = �k�k � 0 and kz = 0�

then u�k� = u2D�kh� + w�kh�ẑ ,

�5�
If k � Wk = �k�k � 0 and kz � 0� then u�k� = u3D�k� .

The total energy

E =
1

2�
k

�u�k��2 �6�

becomes

E = E2D + Ew + E3D, �7�

with

E2D =
1

2 �
k�Vk

�u2D�k��2,

Ew =
1

2 �
k�Vk

�w�k��2, �8�

and

E3D =
1

2 �
k�Wk

�u�k��2,

which have corresponding spectra. The latter are governed
by

�E3D

�t
�k � Wk,t� = �T33→3 + T32→3 + T3w→3��k � Wk,t� ,

�E2D

�t
�k � Vk,t� = �T22→2 + T33→2��k � Vk,t� , �9�

�Ew

�t
�k � Vk,t� = �T2w→w + T33→w��k � Vk,t� ,

where T is the Fourier-space energy transfer. Transfers are
distinguished by the types of interactions, e.g., 33→2 stands
for the interactions between two 3D wave modes that con-
tribute to the 2D equation.

In the Ro→0 limit, it is thought that only resonant in-
teractions make a significant contribution to the slow dynam-
ics until a certain time at which a higher-order expansion can
be continued.32 Only a subset of 3D wavenumbers can sat-
isfy the resonance condition in the 33→3, 32→3, and
3w→3 interactions, but the 32→3 and 3w→3 resonant tri-
ads do not transfer energy to the 2D and w modes, respec-
tively. In fact, the interaction coefficient of the 2D mode in
these resonant interactions was shown to be zero.31 The
transfers are thus said to be “catalytic.” For example, in the
32→3 interaction, the 2D mode plays the role of a catalyzer,
facilitating the nonlinear interaction and energy exchange be-
tween the two 3D modes, but without receiving or losing
energy itself �the 2D mode�. This last property is a key point
in asymptotic theories, predicting a decoupling between the
inertial waves and the 2D coherent structures in a rapidly
rotating flow. Averaging the interactions between fast waves
led Babin et al.33 to obtain an equation governing the verti-
cally averaged 2D structures of the flow decoupled from the
wave dynamics in the limit of small Ro. However, Cambon
et al.34 argued later that for an unbounded domain, coupling
terms between the 2D and wave modes remain active even at
Ro=0. That is, no decoupling was achievable.

When only resonant interactions contribute to the energy
transfers, the asymptotic energy equations are
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�E3D

�t
�k � Wk,t� = T33→3,res + T32→3,res + T3w→3,res,

�E2D

�t
�k � Vk,t� = T22→2, �10�

�Ew

�t
�k � Vk,t� = T2w→w,

where the subscript �jk→ i, res� denotes resonant jk→ i in-
teractions �4�. The time and wavenumber dependence in Eq.
�10� has been omitted. 22→2 and 2w→w interactions are
trivially resonant, since all modes involved have zero fre-
quency. It appears from Eq. �10� that the equation for E2D is
decoupled from the E3D equation and is also similar to that
governing the 2D turbulence. The equation for Ew is also
decoupled from that of E3D and takes the form of a passive
tracer advected by the 2D velocity field u2D. On the other
hand, the E3D remains affected by the kz=0 dynamics
through the set of catalytic resonant triads 32→3 and 3w
→3. We will refer to Eq. �10� as the reduced system of
decoupled equations. In addition to the total energy and he-
licity, this system �valid for the resonant interactions that are
assumed to be present in the small Ro regime� conserves a
new set of quantities.

III. INVARIANT QUANTITIES AND STATISTICAL
EQUILIBRIUM OF THE SMALL Ro REGIME

The systems of equations �9� and �10� conserve different
sets of invariants. We use these differences to derive a statis-
tical equilibrium for the strongly rotating turbulent flow limit
�small Ro regime�. Concerning the invariants, only quadratic
quantities are considered below. In fact, spectrally truncated
periodic representations of flows conserve only quadratic in-
variants. For example, full barotropic quasigeostrophic equa-
tions conserve energy and potential vorticity, but also an in-
finite number of invariants which are functions of the
potential vorticity. The spectrally truncated periodic counter-
part of the barotropic quasigeostrophic flow conserves only
the first two quadratic invariants. The latter is not quadratic
and is therefore not conserved by the periodic spectral trun-
cation.

All calculations are carried out assuming a cylindrical
spectrally truncated domain such that kh, �kz � 
kT, with kT

the truncation wavenumber. The discrete wavenumber incre-
ment is �k=2� /L, where L3 is the size of the domain occu-
pied by the fluid.

A. Analysis of the full equations

Similarly to classical 3D Euler equations, rotating invis-
cid equations �9� conserve total energy �the helicity is also
conserved, but we do not consider its effect on the analysis�.
Note that for nonrotating 3D turbulence, Kraichnan argued
that the helicity did not change the forward cascade of en-
ergy to small scales, but could eventually delay such a
cascade.18

Using Eq. �2�, the total energy equation �6� can be re-
written as

E = 	uu*
 = 	e�k�
 = �
k

�a+�k��2 + �a−�k��2, �11�

where 	·
 is the volume average and k= �k � =�kh
2+kz

2. Con-
sider the phase space of 4N elements �R�a+�k1��, I�a+�k1��,
R�a−�k1��, I�a−�k1��,…, I�a−�kN���, where N is the number
of Fourier modes. The most probable probability density
function in the phase space, or Gibbs canonical distribution,
is

P
 = C exp�− 
E� = C exp − 
��
k

�a+�k��2 + �a−�k��2
 ,

�12�

where C is the normalization constant of P
 such that
�4NP
=1, giving

C−1 = �
R4N

exp�− 
�
k

�a+�k��2 + �a−�k��2

�dNR�a+�dNI�a+�dNR�a−�dNI�a−�

= �1

2
��




4N

, �13�

where 
 is the Lagrange multiplier determined by the en-
semble averaged energy. The classical result for the mean
energy spectra can be recovered

	e�k�
P = 	�a+�k��2 + �a−�k��2
P =
2



, �14�

with 
�0 and 	·
P being the ensemble average calculated
using P
.

We consider the limit of large L to carry out the calcu-
lations using the integrals in the spectral domain of cylindri-
cal truncation considered. We introduce the horizontal and
vertical spectra, Eh�kh� and Ez�kz�,

E = �
0

kT �
−kT

kT �
0

2�

e�k�dk �15�

=�
0

kT

Eh�kh�dkh �16�

=�
−kT

kT

Ez�kz�dkz. �17�

Equations �14�–�17� lead to the horizontal and vertical mean
equipartiton energy spectra,

	Eh�kh�
P =
8�kT



kh, 	Ez�kz�
P =

2�kT
2



. �18�


 can then be obtained from the total initial energy that is
conserved and known, E0, �E0= 	E
= 	E
P� using


 =
4�kT

3

E0
. �19�

In the weakly rotating limit, the flow is considered to be
like classical isotropic nonrotating turbulence. It would thus
be expected to relax to equipartition equation �18�.35 This
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relaxation was, in fact, observed to be delayed by rotation in
the simulations of inviscid weakly rotating flows. In addi-
tion, the large scales of the total isotropic spectrum were
observed not to reach the equilibrium for some of the initial
conditions �ICs�.36

When focusing on the strongly rotating limit, we argue
that the effects of the timescale separation and the much
slower nonlinear timescale �1 discussed in Sec. II B must be
incorporated into this analysis. In the next section, we exam-
ine the statistical equilibrium of this limit.

B. Analysis of the decoupled reduced equations

In the strong rotation limit, Eq. �10� has a new set of
possible invariants �in addition to the total energy E�. The
quantities, elements of the set S= �E3D ,E2D ,V2D ,Ew�, are
conserved by Eq. �10�, where V2D is the 2D enstrophy, de-
fined by

V2D =
1

2 �
k�Vk

��z�k��2, �20�

and �z is the vertical component of the vorticity in spectral
space.

The quantities in S are new constraints on the system’s
dynamics. Taking them into account gives a new expression
for the probability density function,

P
1,
2,
3,
4
= C� exp�− 
1E3D − 
2E2D − 
3V2D − 
4Ew� ,

�21�

where C� is the normalization constant.
Considering the normal mode decomposition introduced

in Sec. II A to be valid for all modes k such that kh�0, we
can express the set of quantities S as follows using the same
phase space variables introduced in Sec. III A. The use of the
normal mode decomposition for all the modes leads to the
generation of nonquadratic terms. We thus restrict the use of
the helical normal mode decomposition to the nonzero fre-
quency modes k�Wk such that both conditions kz�0 and
kh�0 are imposed. For the modes in Vk we have

�ã+�k��2 + �ã−�k��2 − �ã+ã−
*�k� + ã+

*ã−�k��

= �u2D�k��2 for k � Vk, �22�

�ã+�k��2 + �ã−�k��2 + �ã+ã−
*�k� + ã+

*ã−�k��

= �w�k��2 for k � Vk, �23�

implying that

�ã+�k��2 + �ã−�k��2 = 1
2 ��u2D�k��2 + �w�k��2� for k � Vk.

�24�

The phase space can be re-expressed as the space of 4N
modes,

�R�a+�k1��,I�a+�k1��, R�a−�k1��,I�a−�k1��, . . . ,I�a−�kM��,

�R�u2D�kM+1��,I�u2D�kM+1��,R�w�kM+1��,

�I�w�kM+1��, . . . ,I�w�kN��� ,

with N number of Fourier modes and the last N−M wave-

numbers, ki��M+1,N�, being those satisfying k�Vk, where
i�N. Using the probability density functions �21� and �24�
we can rewrite the probability density function as

P
1,
2,
3,
4
= C� exp�− 
1�

k1

kM

��R�a+��2 + �R�a−��2

+ �I�a+��2 + �I�a−��2� − �
kM+1

kN

�
2 + 
3kh
2�

���R�u2D��2 + �I�u2D��2�

− 
4 �
kM+1

kN

��R�w��2 + �I�w��2�
 . �25�

We obtain the ensemble averaged equilibrium spectra
using Eq. �25�,

	E3D�kh�
P
1,
2,
3,
4
=

8�kT


1
kh,

�26�

	E3D�kz�
P
1,
2,
3,
4
=

2�kT
2


1
,

	E2D�kh�
P
1,
2,
3,
4
=

2�kh


2 + 
3kh
2 , �27�

	V2D�kh�
P
1,
2,
3,
4
=

2�kh
2


2 + 
3kh
2 , �28�

	Ew�kh�
P
1,
2,
3,
4
=

2�


4
kh. �29�

We can then estimate the four Lagrange multipliers using the
values of �E3D, E2D, V2D, and Ew�. This leads to


1 =
4�kT

3

E3D
, �30�

E2D =
�


3
ln�1 +


3


2
kT

2� , �31�

V2D = �� kT
2


3
−


2


3
2 ln�1 +


3


2
kT

2�
 , �32�


4 =
�kT

2

Ew
. �33�

The constants 
2 and 
3 are solutions of the coupled system
�31� and �32�. They are obtained numerically starting from a
first analytical estimation, valid when �
3 /
2��V2D /E2D�
�1,
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3 �
�kT

2/V2D

1 +
E2D

V2D

kT
2

�exp�kT
2 E2D

V2D

 − 1�

, �34�


2 =
�kT

2

E2D
−


3V2D

E2D
. �35�

IV. COMPARISON WITH NUMERICAL
SOLUTIONS

We now compare the results we derived in Sec. III B
to the numerical solutions that we obtained from solving
Eq. �1�.

We choose to focus on the homogeneous inviscid solu-
tions in a finite domain. Both studies in finite and infinite
domains are idealizations of rotating flows. Both approaches
have advantages and limitations to direct applications. Here
we use direct numerical simulation in a periodic domain to
solve the Euler equations. The difficulty arises when the in-
tegral scales of the Wk and Vk modes grow and fill a large
part of the domain, as the solutions become more dependent
on the specific geometry of the domain of study.

Equation �1� is solved numerically using a direct
�dealiased� pseudospectral method with a resolution 90.3 A
high resolution is not needed to obtain the statistical equilib-
rium of this truncated system. The integration domain is tri-
ply periodic of length 2�. We use the leapfrog time differ-
encing and the Asselin–Robert filter to control the
computational mode.37 This leads to a nonexact conservation
of the high frequency modes. In fact, the filter preferentially
damps high frequency Wk modes in order to guarantee the
stability of the computational mode of the leapfrog time-
integration scheme. The “two-thirds rule” was chosen for
dealiasing.

One set of simulations is initialized isotropically while
the ICs of the second set are anisotropic, for which most of
the energy is contained in the zero-frequency modes Vk.
With these choices we were able to investigate the tendencies
of the system as it approaches its equilibrium state for vari-
ous rotating rates. A range of rotation rates and the resulting
inviscid spectra are compared to the results derived above.

The initial spectra are shown in Fig. 1. The set I of
isotropic ICs, denoted IC: I, is initiated with the energy
spectrum,

E�k� = A exp��k − 8�/0.5�2, �36�

where k=�kh
2+kz

2 is the isotropic wavenumber. Most of the
energy is thus contained in the wave modes Wk. The initial
energy is peaked around kh=8 and kz=7. The constant A is
chosen to give a total energy of E=0.1.

The set II of ICs, denoted IC: II, is initiated with

E3D�k � Wk� = 0.0005B exp��k − 8�/0.5�2

and

E�k � Vk� = �E2D + Ew��k � Vk�

= 0.0995B exp��k − 8�/0.5�2. �37�

B is a normalization constant set so that E=0.1. Most of the
initial energy in this configuration is contained in the zero-
frequency modes Vk.

A range of rotation rates was investigated. We only se-
lected to display three key values of Ro. These values are
similar to those identified in previous decay simulations.13

The Rossby numbers were computed as

Ro =
�	�z

2

f

�38�

and

Ro2D =
�	�̄z

2

f

,

where �̄z is the vertically averaged vertical component of the
vorticity field corresponding to 2D Vk Fourier modes �with
kz=0�. Ro2D gives a Rossby number specifically for the 2D
modes.

The summary of the relevant parameters is displayed in
Table I. The simulations with Ro=0.01 initiated with both
IC: I and IC: II were particularly difficult to run numerically.
Their completion time was about 20 days of CPU time on an
AMD Opteron 250, 2390 MHz.

A. Conservation and timescale

Figure 2 shows the time series of E2D and E3D for three
values of Ro=0.01, 0.2, and � and up to dimensional time
t̃=100. The simulations initiated with close-to-isotropic con-
ditions, IC: I, are displayed in Fig. 2�a�. The simulations
initiated with most of the energy containing modes in Vk are
displayed in Fig. 2�b�. Figure 3 shows the time series of V2D

and Ew for three values of Ro=0.01, 0.2, and �. The
timeseries are displayed up to the dimensional time t̃=100
for both IC: I and IC: II.

The nonrotating simulations Ro→� initiated with both
ICs, IC: I and IC: II, rapidly relax to a state of equilibrium.
This equilibrium corresponds to the classical equipartition of
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FIG. 1. Initial horizontal spectra of ICs, IC: I and IC: II.
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isotropic turbulence �not shown�. The equipartitioned equi-
librium of this simulation corresponds to the equipartitioned
spectrum of conserved total energy equation �18�. In terms of
the modal decomposition equation �5�, the breakdown of the
isotropic equipartition reads E3D=0.098 and E2D=0.001,
Ew=0.001, and for the enstrophy V2D=0.7.

For both ICs, IC: I and IC: II, the Ro=0.2 solution ap-
proaches the values of the isotropic nonrotating equilibrium,

When initiated with IC: I, the Ro=0.2 solutions show an
initial increase in E2D and V2D, which reach a maximum at
t̃=4. This corresponds to the nondimensional time t=40.2,
after which E2D decreases and approaches the inviscid

system’s equilibrium. This increase is surprising given that
the equilibrium value of E2D is actually lower than the initial
value of E2D. A mechanism of transfer from Wk to 2D modes
is inducing this increase. This is reminiscent of the range of
rotation identified in Bourouiba and Bartello, denoted the
intermediate Ro range. The mechanism responsible for this
increase could be attributed to near-resonant interactions
since the timescale at which these interactions would be ef-
fective would correspond to t�O�1 /Ro2�=25 �Ref. 32� �di-
mensional time t̃=2.42�. However, a smaller steady growth
of the 2D energy is observable earlier in the simulation and
occurs on a short timescale comparable to the linear time-

TABLE I. The timestep �t, the rotation rate f =2�, the final output time te, the 2D Rossby number Ro2D, and
the Robert filter parameter � for each of the selected simulations.

IC: I IC: II

�t f te Ro2D � �t f te Ro2D �

Ro=0.01 2�10−4 206.3 800 0.003 1�10−4 2�10−4 251.7 800 0.01 1�10−4

Ro=0.2 2�10−4 10.3 100 0.062 8�10−4 2�10−4 12.6 100 0.2 8�10−4

Ro→� 1�10−3 0 100 � 8�10−4 1�10−3 0 100 � 8�10−4

1e-04

0.001

0.01

0.1

1 10 100

E
3
D
a
n
d

E
2
D
f
o
r

I
C
:

I

t

E2D(Ro = 0.01)
E3D(Ro = 0.01)

E2D(Ro = 0.2)
E3D(Ro = 0.2)

E2D(Ro ∞)
E3D(Ro ∞)

(a)

1e-04

0.001

0.01

0.1

1 10 100

E
3
D
a
n
d

E
2
D
f
o
r

I
C
:

I
I

t

E2D(Ro = 0.01)
E3D(Ro = 0.01)

E2D(Ro = 0.2)
E3D(Ro = 0.2)

E2D(Ro ∞)
E3D(Ro ∞)

(b)
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scale of the order t̃=1 / f =0.097 �Ro=0.2 curve on Fig. 2�a��.
The mechanisms involved in the growth of 2D energy in this
regime are still not well understood, but this is beyond the
scope of the present study. Note that the increase in E2D is
not observable when starting with nearly 2D ICs, IC: II
�Ro=0.2 curve on Fig. 2�b��. Another mechanism is acting in
this configuration, which is likely related to the destabiliza-
tion of 2D structures and isotropization of 2D flows. The
difference between IC: I and IC: II for the Ro=0.2 simula-
tions suggests a dependence of the mechanism favoring the
energy transfer from 3D to 2D modes on the initial distribu-
tion of energy between Wk and Vk.

The focus of this study is the stronger rotation rate that
corresponds to Ro=0.01. The Ro=0.01 simulations reveal a
new set of quasi-invariants which is coherent with the set S
of quantities conserved by the decoupled model �10�. These
are E2D and E3D in Fig. 2 and V2D and Ew in Fig. 3. They are
conserved when starting from both ICs �quasi-2D, IC: II, and
quasi-isotropic 3D ICs, IC: I�. However, Eq. �10� is valid at
the first order of the asymptotic development only. We aim to
quantify, using the simulations, the time to which the
asymptotic expansion is valid and examine the behavior of
the system at long times when the asymptotic development is
no longer strictly valid. Thus, we extended the simulations of
the smaller Ro started with both ICs �IC: I and IC: II� in
order to investigate the timescale on which the invariants S
are conserved.

Figure 4 shows the time series of the extended simula-
tions of Ro=0.01 with IC: I and IC: II. Time has been
rescaled to the nondimensional timescale f t̃. We can extract a
relevant timescale at which the invariant regime is numeri-
cally valid. For both IC: I and IC: II, E3D and E2D are qua-
siconstant �E3D is conserved at about 85% at the end of the
simulations for both IC: I and IC: II due to the discriminating
effect of the Robert filter� until a threshold time. This time is
of the same order of magnitude for both sets of ICs, IC: I and
IC: II, and is t��20 000. This seems to confirm the
asymptotic theories of decoupling predicting that the
decoupling is valid until a time of the order t�,theory

�O�1 /Ro2��1�104. Note that the increase in E2D ob-
served for IC: I, Ro=0.01 is weak. This is consistent with the
fact that the mechanism�s� responsible for the initial increase
in 2D energy for IC: I, Ro=0.2 is specific to the intermediate
Ro range.

In this section, we identified the time range on which the
new set of invariants S critical for Eq. �21� are observable
numerically. For t
 t�, the quantities S are constant and the
theoretical spectra derived are constant. For t� t�, the quan-
tities S are now varying, so one would expect the theoretical
spectra based on the existence of the invariants S to no
longer be valid. The two questions addressed in the subse-
quent sections are: how do the theoretical spectra �Eqs.
�26�–�29�� compare to those of the numerical solutions on
the time range of conservation of S �t
 t��, and how do the
theoretical spectra compare to the simulation results beyond
this time range �t� t��?

B. Horizontal dynamics

We first focus on the horizontal dynamics. The time evo-
lution of the spectra E2D�kh�, Ew�kh�, and E3D�kh� for both
t
 t�, for which the asymptotic first order decoupling is ob-
served to hold, and t� t�, for which it is not, are displayed in
Figs. 5 and 7. The horizontal spectra E2D�kh�, Ew�kh�, and
E3D�kh� for simulations initiated with IC: I and IC: II are
shown for t� �0fte�. For t
 t�, S are conserved and the de-
coupled description Sec. III B holds. This is the Vk decou-
pled phase. Hence, the theoretical spectra �Eqs. �26�–�29��
are constant, with those constants being calculated based on
the invariants E2D, E3D, Ew, and V3D. The numerical spectra
agree with the theory: They quickly relax toward the pre-
dicted equilibrium spectra. In particular, for both ICs, the
numerical spectra display the increase in energy in 2D hori-
zontal large scales consistent with the theoretical predicted
spectra, as shown in Fig. 5. The horizontal wavenumber
characteristic of the 2D energy spectrum is defined as

�h2D�t� =
�k�Vk

khE2D�kh,t�dkh

�k�Vk
E2D�kh,t�dkh

. �39�

It is used to indicate the direction of the transfer of the en-
ergy in classical 2D turbulence, and it is also called the cen-
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troid. We display the time evolution of the centroid, �h2D, for
both IC: I and IC: II in Fig. 6. The centroid of 2D energy for
the simulations initiated with IC: I starts decreasing after
initially staying constant. It decreases until t� t�. The de-
crease in �h2D corresponds to an upscale transfer of E2D

similar to that observed in classical 2D turbulence. When

starting with IC: II, the centroid of energy shows a similar
dynamics and reaches a plateau at t� t�. However, it starts
decreasing again for times t�
 t
5�104, while the total
E2D is no longer invariant as in Fig. 4�a�.

Figure 5 shows that during the decoupled phase t
 t�

and for both IC: I and IC: II the Ew�kh� theoretical and nu-
merical spectra are in good agreement. They show a horizon-
tal forward cascade of the w energy, consistent with the pas-
sive scalar dynamics predicted by Eq. �10�.

For t� t�, quantities S are no longer invariants. We con-
sider the instantaneous values of the quantities S—now vary-
ing in time—to calculate the theoretical spectra �Eq.
�26�–�29��. At each time, instantaneous theoretical spectra
are obtained. The reversal in the slope of E2D�kh� showing a
return to a downscale cascade is captured for both IC: I and
IC: II. However, the larger horizontal 2D scales kh=1 for the
IC: II simulations retain more 2D energy compared to the
theoretical prediction. For this time period, �h2D increases,
which shows a reversal of dynamics and confirms the down-
scale 2D energy transfer �Fig. 6�. For t� t�, Ew�kh� has simi-
lar dynamics to that of the decoupled phase. It corresponds to
a forward horizontal energy transfer and an instantaneous
equilibrium of equipartition of Ew among w modes.

Finally, concerning E3D�kh�, Fig. 7 shows that the theo-
retical equilibrium horizontal spectra initiated with IC: I vary

FIG. 5. �Color online� Horizontal wavenumber spectra of E2D �upper panel� and Ew �lower panel� for Ro=0.01 and for IC: I �left column� and IC: II �right
column�. The theoretical spectra have been offset for clarity. The initial numerical spectra are denoted t0 and multiple lines are for different times.

FIG. 6. Time series of �h2D �centroid of 2D energy spectra defined by Eq.
�39��, with nondimensional time f t̃ and for Ro=0.01. Both simulations
started with IC: I and IC: II are shown.
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very little in time. The larger 3D horizontal scales appear to
lose energy in favor of the smaller horizontal 3D scales.
When starting farther from the equipartition equilibrium �IC:
II on Fig. 7�b��, the theoretical spectra keep the same slope,
but increase in amplitude as E3D increases. The numerical
spectra show a tendency of E3D�kh� to relax toward the the-
oretical equilibrium for both ICs.

The equilibrium statistical mechanics captures the hori-
zontal dynamical tendencies of the Vk and Wk modes accu-
rately for both time windows t
 t� �strict validity of the de-
coupled model� and t� t� �set of quantities S vary in time�.
Thus, when the set of quantities S is varying in time
�t� t��, their variation is slow enough to allow the subsystem
of Vk modes to relax to “instantaneous equilibrium” spectra
on a short timescale. The horizontal dynamics of the Wk
modes for IC: II suggests that the large scale 2D modes are
losing energy in favor of the small horizontal scales of Wk
modes.

C. Vertical dynamics and anisotropy

In Fig. 8, the vertical spectra of the Wk modes, E3D�kz�,
are displayed for both ICs, IC: I and IC: II. The vertical
equipartition of energy is not reached even at the end of the
simulation for both initial conditions. When starting with a

near-isotropy IC, IC: I, the 3D energy increases in the
smaller kz modes. This shows a transfer of 3D energy to
larger vertical scales. Beyond t� when the quantities S are
determining the instantaneous horizontal short-time spectral
equilibrium, the vertical dynamics of Wk seems very differ-
ent. In both IC: I and IC: II, the vertical downscale transfers
are weaker than what is expected by the equipartition equa-
tion �26� for both the t
 t� and t� t� time windows.

Figure 9 shows the 3D energy density spectrum
e3D�kh ,kz� defined by

e3D�kh,kz� =
�u3D�kh,kz��2

Mo�kh,kz�
, �40�

where Mo�kh ,kz� is the number of modes such that kh−1 /2

kh�
kh+1 /2 and �kz �−1 /2
 �kz� � 
 �kz � +1 /2. This spec-
trum provides more information about the anisotropy noted
above. Note that an equipartition of 3D energy corresponds
to a flat kh−kz spectrum. The initial isotropic distribution of
energy corresponding to IC: I and IC: II is shown by a
e3D�kh ,kz , t0� spectrum in the top panel of Fig. 9. Note that
only the intensity of energy contained in the 3D modes
changes from IC: I to IC: II �see Eqs. �36� and �37��, but the
distribution of the energetic Wk modes does not change.
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In the initial phase of decoupling �t
 t��, the 3D energy
spectrum does not vary for either IC. However, a slight pref-
erential redistribution of energy occurs in favor of the
energy-containing modes with smaller frequencies �small
kz /k�, especially for IC: I �see region below the kh=kz diag-
onal�. This is not surprising given the tendency of the reso-
nant 33→3 interactions to transfer 3D energy toward Wk

modes of smaller frequency �k.31 Recall that the resonant
interactions in Eq. �10� are assumed to be predominant in the
decoupled regime of time t
 t�. Our observation is consis-
tent with the theoretical analysis of Galtier in which an an-
isotropic decomposition of wave numbers in kh−kz con-
firmed theoretically the tendency of the resonant interactions
to develop and maintain anisotropy.
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FIG. 9. �Color online� Time averaged 3D energy spectrum e3D�kh ,kz� in log-log scale at an initial time t0 ��a� and �b��, an intermediate time range below t�

such that t1� �460,1.38�104� ��c� and �d��, an intermediate time t2� �2.3�104 ,4.6�104� ��e� and �f��, and the end of the simulations with t3� �1.6
�105 ,1.8�105� ��g� and �h��. Both the t2 and t3 time ranges correspond to times larger than t�, i.e., beyond the decoupled phase. Ro=0.01 and the ICs are
IC: I �left column� and IC: II �right column�. The colors are normalized for each graph such that the maximum �minimum� value of the modal spectrum is
represented by the brightest �darkest� color.
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For t� t�, however, it is expected that nonresonant inter-
actions are active. We can see in Fig. 9 that the apparent
transfer of 3D energy to the larger vertical 3D scales �observ-
able in the vertical spectra, see Fig. 8� still acts to preferen-
tially concentrate energy in the large vertical scale �small kz�
and small horizontal scale �large kh� Wk modes �lower right
corner of the kh−kz plane in Fig. 9�. This is particularly true
toward the end of both simulations IC: I and IC: II �Figs.
9�g� and 9�h��.

When looking at the set of quasi-2D ICs, IC: II, we note
that the preferential region of transfer of energy from the Vk
2D modes to the Wk 3D modes is in favor of the small
horizontal and large vertical scales. At the end of both IC: I
and IC: II simulations the equipartition is not reached �here
we are referring to the equipartition expected to be reached
when Ro→�, i.e., flat spectrum� and if the process of redis-
tribution toward equipartition is occurring it seems to be
much reduced by the effect of rotation, even in the coupled
stage �involving interactions that are not resonant�.

The vertical dynamics of the Wk wave modes suggest
that the energy is preferentially transferred to the region of
low frequency �large kh and small kz� modes, when a signifi-
cant 3D energy is present initially �i.e., IC: I�. When starting
with a dominant 2D energy, the energy transfers from 2D to
3D modes are done locally frequency wise, leading to a
transfer in favor of the low wave frequencies �large kh and
small kz�. This anisotropy in favor of the small frequency
spectral region is very long lasting and coincides with an
inhibition of the 3D energy transfers toward small vertical
small horizontal scales �top right corner of the kh−kz phase
in Fig. 9� during both the decoupled and coupled stages �t

 t� and t� t��.

V. DISCUSSION

The main purpose of this study has been to examine the
dynamics of the small Ro range. This is the third of three
rotating ranges previously identified: weakly, intermediate,
and strongly rotating.13 In the small Ro limit several dynam-
ics were discussed in the literature. On the one hand some
theoretical results predict a decoupling of the wave from the
zero-frequency modes. These results include the analysis of
Babin et al.,33,38 the studies of weakly resonant waves,31 and
the wave-turbulence approach used by Galtier �2003�. How-
ever, note that theoretical results of the wave-turbulence ap-
proach are not valid in the small kz and the large kh spectral
domain. On the other hand extended wave-turbulence results
by Cambon et al.34 suggested that such decoupling cannot be
reached due to coupling terms remaining active even in the
Ro→0 limit.

Our focus has been to investigate the inviscid dynamics
of a strongly rotating spectrally truncated turbulent flow,
starting with the analysis of the statistical equilibrium of a
model of flow in which zero-frequency and wave modes are
decoupled. Our tool of study was equilibrium statistical me-
chanics. For comparison, we also examined numerically the
effect of rotation on the equilibrium of an inviscid unforced
truncated rotating turbulent system for different ICs and for
moderate to strong rotation rates.

We started by deriving the theoretical spectra for the
decoupled wave and zero-frequency modes. This was
complemented by a numerical study of the inviscid dynamics
which showed two phases: a first decoupled phase for t
 t�

and a coupled phase for t� t�. Thus, the prediction of decou-
pling of the wave and zero-frequency modes in the
asymptotic limit of Ro→0 is valid and observable numeri-
cally. For both coupled and decoupled time phases, we find a
reduction of the vertical energy transfers to small vertical
scales.

During the decoupled time phase �t
 t�� the new set of
invariant characteristic of the theoretical model of decoupled
equations is found to be in agreement with the numerical
simulation of the full truncated inviscid equations. The time
until which the decoupling is observable is found to be
t��2 /Ro2, which is consistent with the weakly nonlinear
resonant wave theory prediction. This evaluation is robust to
the change of ICs from 2D to 3D initial flows. The theoret-
ical spectra derived from statistical equilibrium assumptions
captured the horizontal dynamics of the decoupled system
accurately. We observed an upscale horizontal transfer of the
2D energy and a forward horizontal transfer of 3D and w
energies. This dynamics is in agreement with the “global
splitting” result by Babin et al., predicting a decoupling of
the 2D and w modes from the 3D modes, an inverse cascade
of 2D energy, a direct cascade of 3D energy, and a passive
scalar dynamics for the w modes.

The equilibrium statistical mechanics spectra predicted a
vertical equipartition of the 3D energy; however, we observe
a preferential concentration of wave energy in the smaller
frequency wave modes. This preferential concentration is not
consistent with the vertical dynamics of the decoupled model
of Babin et al.38 In fact, they predict a “freezing” of the
vertical 3D energy transfers. On the other hand, weak wave
theories predict that triple inertial wave resonant interactions
transfer energy to smaller frequency modes �excluding the
zero-frequency modes�.31 The anisotropy was also found to
be consistent with the spectral predictions of wave-
turbulence kinetic energy equations built on the resonant in-
ertial wave interactions.39 The numerical results obtained by
Bellet et al.16 simulating inertial wave resonant interactions
only between nonzero frequency modes showed a tendency
of the 3D wave modes to concentrate the energy in the lower
frequency modes. However, these wave-turbulence results
are valid in a restricted spectral domain not including the
zero-frequency modes. Hence, the advantage of the inviscid
simulations presented here is that they confirm the develop-
ment of anisotropy in the decoupled system of modes con-
taining all the modes �both the zero-frequency and the 3D
modes�. Finally, another conserved quantity is necessary in
order to improve the prediction of the decoupled vertical
dynamics. Accounting for the influence of the conservation
of the wave mode’s helicity or the conservation of energy by
triple resonant wave mode interactions could also help im-
prove the wave equilibrium statistical mechanics spectra
derived.

In the coupled phase �t� t��, the set of invariants corre-
sponding to the decoupled equations is no longer conserved
quantities. However, the simulations show that their variation
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timescale is long enough to consider them quasi-invariants
on the short timescale. The corresponding time-varying the-
oretical horizontal spectra are in agreement with the instan-
taneous numerical spectra, accurately capturing the instanta-
neous horizontal dynamics of the now-coupled wave and
zero-frequency modes. Hence, the set of slowly varying “in-
variants” still plays a constraining role on the short-time dy-
namics. This is reminiscent of the example of the inviscid
stratified truncated Boussinesq equations which have con-
straining quasi-invariants on the short-time dynamics of the
slow modes.28

The large horizontal scales of the zero-frequency modes
lose energy to the now coupled wave modes. After an initial
upscale horizontal transfer taking place during the decoupled
phase, the transfer of 2D energy starts to favor the 2D small
horizontal scales. In this coupled phase, the vertical aniso-
tropy observed in the decoupled phase persists. In fact, the
wave energy remains predominantly contained in the large
vertical and small horizontal scales.

Finally, in the coupled phase, an initially 3D flow led to
a transient increase in 2D energy. The 2D energy reaches its
statistical equilibrium after a phase of increase and then de-
crease with time. The initial growth is not observed for both
ICs. When the IC is 2D, the growth is not observed, suggest-
ing that the mechanism leading to the transient growth 2D
energy depends on the initial ratio of energy between Wk and
Vk. The rate of this 2D energy increase varies with Ro. It is
stronger for a flow with Ro�0.2 compared to the flow with
Ro=0.01. The energy transfer from 3D to 2D causing the
increase in 2D energy is reminiscent of the intermediate Ro
range identified in the decaying simulations of Bourouiba
and Bartello. The mechanisms responsible for this increase
could be attributed to near resonance. In fact, the forced
simulations of Smith and Lee suggested that near-resonant
interactions were responsible for the 3D to 2D transfers at
the moderately small Ro that they examined. If that was the
case, we would expect the timescale on which near-resonant
interactions act to correspond to t�O�1 /Ro2�.32 However,
we observe that the steady growth of 2D energy occurs ear-
lier in the Ro=0.2 simulation. It starts at a time comparable
to the linear timescale of rotation of the order of 1 / f . This
timescale suggests that the mechanism responsible for the
transient 2D energy increase could also be initiated by linear
effects. In fact, linear effects were proposed as an explana-
tion to the increase in 2D energy in an inhomogeneous rotat-
ing flow.15 Finally, much more understanding is needed to
explain the mechanisms occurring beyond the decoupled
phase �t� t��. In the small Ro limit, where a clear coupling
phase follows the decoupling phase, this mechanism remains
weaker than that observed in the coupled phase of flows with
larger Ro. What the present inviscid simulations suggest is a
confirmation of the existence of the a mechanism depending
nonmonotonically on Ro, inherent to the rotating flow dy-
namics in the coupled phase, and which is at the origin of the
intermediate Ro regime observed in decaying rotating
flows.13
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APPENDIX: NORMAL MODES

The linearization of the rotating barotropic vorticity
equations around a rest base state gives

��

�t
= �f ẑ · ��u , �A1�

with �= ��x ,�y ,�z� the vorticity vector and u= �u ,v ,w� is
the velocity vector. Its transformation to Fourier space leads
to

�

�t
Wk = MkWk, �A2�

with

Wk = ��̂x

�̂y

�̂z
�,

�A3�

Mk = � 0 − ifkz
2/k2 + ifkzky/k2

+ ifkz
2/k2 0 − ikzkx/k2

− ifkzky/k2 + ifkzkx/k2 0
� ,

where

��x

�y

�z
��x,y,z,t� = �k��̂x

�̂y

�̂z
�exp�ik · r� , �A4�

with r being the position vector �x ,y ,z� and i2=−1. If we
restrict ourselves to fluids in a periodic domain of size
L�L�L, we have k= �kx ,ky ,kz�= �mx ,my ,mz�2� /L, with
�mx ,my ,mz��Z3, the set of integers.

The diagonalization of this system leads to the eigenval-
ues

�s = sfkz/k

and

�0 = 0, �A5�

with s=�. The associated eigenvectors are

n�s
= ns = �− kxkz/kh

2 + iskyk/kh
2

− kykz/kh
2 − iskxk/kh

2

1
�, n�0

= k = �kx

ky

kz
� .

�A6�

The horizontal wavevector is kh=�kx
2+ky

2. The derivation
of the eigenvectors requires that kz�0 and kh�0. From Eq.
�A6� we see that ns and n−s are complex conjugates and that
�k ,ns ,n−s� forms an orthogonal basis, i.e., n

s
*=n−s and
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k ·n
s
*=k ·n

−s
* =ns ·n

−s
* =0 � * is used for complex conjugate�.

It is easy from Eq. �A6� to show that ns�−k�=n−s�k� and that
�ns�=2.

Due to the continuity equation, � ·u=0, the decomposi-
tion of the velocity field leads to components only on
�n+ ,n−�, i.e., a zero component on k.

This gives a decomposition of the implicitly nondiver-
gent velocity field,

u�r� = �
k

u�k�exp�ik · r�

= �
k

�A+�k,t�n+�k� + A−�k,t�n−�k��exp�ik · r� ,

�A7�

with As�k , t�=as�k�exp�i�st�. The reality condition �u�r�
must be real� implies that u*�k�=u�−k�. Thus, the Fourier
components as�k� satisfy a

s
*�k�=as�−k�.

The decomposition of the flow field into these inertial
waves, Eq. �A7�, corresponds to the helical mode
decomposition.1,40 Equivalent decompositions include the
Craya–Herring decomposition41,42 and the poloidal-toroidal
decomposition.16,40
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